Search K Nearest Neighbors on Air

نویسندگان

  • Baihua Zheng
  • Wang-Chien Lee
  • Dik Lun Lee
چکیده

While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile devices make this problem particularly interesting and challenging. An efficient data organization, called sorted list, and the corresponding search algorithm are proposed and compared with the well-known spatial index, R-Tree. In addition, we develop an approximate search scope to guide the search at the very beginning of the search process and a learning algorithm to adapt the search scope during the search to improve energy and access efficiency. Simulation based performance evaluation is conducted to compare sorted list and R-Tree. The results show that the utilization of search scope and learning algorithm improves search efficiency of both index mechanisms significantly. While R-Tree is more power efficient when a large number of nearest neighbors is requested, the sorted list has better access efficiency and less power consumption when the number of nearest neighbors is small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

Nearest Neighbors on Air ?

While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile device...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Adaptive k-Nearest-Neighbor Classification Using a Dynamic Number of Nearest Neighbors

Classification based on k-nearest neighbors (kNN classification) is one of the most widely used classification methods. The number k of nearest neighbors used for achieving a high accuracy in classification is given in advance and is highly dependent on the data set used. If the size of data set is large, the sequential or binary search of NNs is inapplicable due to the increased computational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003